Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38617232

RESUMO

Large serine integrases are phage- (or mobile element-) encoded enzymes that catalyse site-specific recombination reactions between a short DNA sequence on the phage genome (attP) and a corresponding host genome sequence (attB), thereby integrating the phage DNA into the host genome. Each integrase has its unique pair of attP and attB sites, a feature that allows them to be used as orthogonal tools for genome modification applications. In the presence of a second protein, the Recombination Directionality Factor (RDF), integrase catalyses the reverse, excisive reaction, generating new recombination sites, attR and attL. In addition to promoting attR x attL reaction, the RDF inhibits attP x attB recombination. This feature makes the directionality of integrase reactions programmable, allowing them to be useful for building synthetic biology devices. In this report, we describe the degree of orthogonality of both integrative and excisive reactions for three related integrases (ϕC31, ϕBT1, and TG1) and their RDFs. Among these, TG1 integrase is the most active, showing near complete recombination in both attP x attB and attR x attL reactions, and the most directional in the presence of its RDF. Our findings show that there is varying orthogonality among these three integrases - RDF pairs: ϕC31 integrase was the least selective, with all three RDFs activating it for attR x attL recombination. Similarly, ϕC31 RDF was the least effective among the three RDFs in promoting the excisive activities of the integrases, including its cognate ϕC31 integrase. ϕBT1 and TG1 RDFs were noticeably more effective than ϕC31 RDF at inhibiting attP x attB recombination by their respective integrases, making them more suitable for building reversible genetic switches. AlphaFold-Multimer predicts very similar structural interactions between each cognate integrase - RDF pair. The binding surface on RDF is much more conserved than the binding surface on integrase, an indication that specificity is determined more by the integrase than the RDF. Overall, the observed weak integrase/RDF orthogonality across the three enzymes emphasizes the need for identifying and characterizing more integrase - RDF pairs. Additionally, the ability of a particular integrase's preferred reaction direction to be controlled to varying degrees by non-cognate RDFs provides a path to tunable, non-binary genetic switches.

2.
Nature ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632404

RESUMO

Bacteria have adapted to phage predation by evolving a vast assortment of defence systems1. Although anti-phage immunity genes can be identified using bioinformatic tools, the discovery of novel systems is restricted to the available prokaryotic sequence data2. Here, to overcome this limitation, we infected Escherichia coli carrying a soil metagenomic DNA library3 with the lytic coliphage T4 to isolate clones carrying protective genes. Following this approach, we identified Brig1, a DNA glycosylase that excises α-glucosyl-hydroxymethylcytosine nucleobases from the bacteriophage T4 genome to generate abasic sites and inhibit viral replication. Brig1 homologues that provide immunity against T-even phages are present in multiple phage defence loci across distinct clades of bacteria. Our study highlights the benefits of screening unsequenced DNA and reveals prokaryotic DNA glycosylases as important players in the bacteria-phage arms race.

3.
Cell ; 187(5): 1206-1222.e16, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38428395

RESUMO

Plasmids are extrachromosomal genetic elements that often encode fitness-enhancing features. However, many bacteria carry "cryptic" plasmids that do not confer clear beneficial functions. We identified one such cryptic plasmid, pBI143, which is ubiquitous across industrialized gut microbiomes and is 14 times as numerous as crAssphage, currently established as the most abundant extrachromosomal genetic element in the human gut. The majority of mutations in pBI143 accumulate in specific positions across thousands of metagenomes, indicating strong purifying selection. pBI143 is monoclonal in most individuals, likely due to the priority effect of the version first acquired, often from one's mother. pBI143 can transfer between Bacteroidales, and although it does not appear to impact bacterial host fitness in vivo, it can transiently acquire additional genetic content. We identified important practical applications of pBI143, including its use in identifying human fecal contamination and its potential as an alternative approach to track human colonic inflammatory states.


Assuntos
Bactérias , Trato Gastrointestinal , Metagenoma , Plasmídeos , Humanos , Bactérias/genética , Bacteroidetes/genética , Fezes/microbiologia , Plasmídeos/genética
4.
Cell Rep ; 42(8): 113009, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37598339

RESUMO

To understand how a bacterium ultimately succeeds or fails in adapting to a new host, it is essential to assess the temporal dynamics of its fitness over the course of colonization. Here, we introduce a human-derived commensal organism, Bacteroides thetaiotaomicron (Bt), into the guts of germ-free mice to determine whether and how the genetic requirements for colonization shift over time. Combining a high-throughput functional genetics assay and transcriptomics, we find that gene usage changes drastically during the first days of colonization, shifting from high expression of amino acid biosynthesis genes to broad upregulation of diverse polysaccharide utilization loci. Within the first week, metabolism becomes centered around utilization of a predominant dietary oligosaccharide, and these changes are largely sustained through 6 weeks of colonization. Spontaneous mutations in wild-type Bt also evolve around this locus. These findings highlight the importance of considering temporal colonization dynamics in developing more effective microbiome-based therapies.


Assuntos
Bacteroides thetaiotaomicron , Microbiota , Humanos , Animais , Camundongos , Bacteroides thetaiotaomicron/genética , Aclimatação , Bioensaio , Perfilação da Expressão Gênica
5.
Nucleic Acids Res ; 51(16): 8891-8907, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37548413

RESUMO

In eukaryotic messenger RNAs, the 5' cap structure binds to the translation initiation factor 4E to facilitate early stages of translation. Although many plant viruses lack the 5' cap structure, some contain cap-independent translation elements (CITEs) in their 3' untranslated region. The PTE (Panicum mosaic virus translation element) class of CITEs contains a G-rich asymmetric bulge and a C-rich helical junction that were proposed to interact via formation of a pseudoknot. SHAPE analysis of PTE homologs reveals a highly reactive guanosine residue within the G-rich region proposed to mediate eukaryotic initiation factor 4E (eIF4E) recognition. Here we have obtained the crystal structure of the PTE from Pea enation mosaic virus 2 (PEMV2) RNA in complex with our structural chaperone, Fab BL3-6. The structure reveals that the G-rich and C-rich regions interact through a complex network of interactions distinct from those expected for a pseudoknot. The motif, which contains a short parallel duplex, provides a structural mechanism for how the guanosine is extruded from the core stack to enable eIF4E recognition. Homologous PTE elements harbor a G-rich bulge and a three-way junction and exhibit covariation at crucial positions, suggesting that the PEMV2 tertiary architecture is conserved among these homologs.


Assuntos
Vírus de Plantas , Sequências Reguladoras de Ácido Ribonucleico , Tombusviridae , Fator de Iniciação 4E em Eucariotos/metabolismo , Guanosina/metabolismo , Vírus de Plantas/química , Biossíntese de Proteínas , Capuzes de RNA/genética , RNA Mensageiro/metabolismo , Tombusviridae/química
6.
Front Mol Biosci ; 10: 1113960, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37006622

RESUMO

Mobile genetic elements can encode a wide variety of genes that support their own stability and mobility as well as genes that provide accessory functions to their hosts. Such genes can be adopted from host chromosomes and can be exchanged with other mobile elements. Due to their accessory nature, the evolutionary trajectories of these genes can differ from those of essential host genes. The mobilome therefore provides a rich source of genetic innovation. We previously described a new type of primase encoded by S. aureus SCCmec elements that is composed of an A-family polymerase catalytic domain in complex with a small second protein that confers single-stranded DNA binding. Here we use new structure prediction methods in conjunction with sequence database searches to show that related primases are widespread among putative mobile genetic elements in the Bacillota. Structure predictions show that the second protein adopts an OB fold (common among single-stranded DNA binding (SSB) proteins) and these predictions were far more powerful than simple sequence comparisons in identifying its homologs. The protein-protein interaction surface varies among these polymerase-SSB complexes appear to have arisen repeatedly by exploiting partial truncations of the polymerase's N-terminal accessory domains.

7.
bioRxiv ; 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36993556

RESUMO

Plasmids are extrachromosomal genetic elements that often encode fitness enhancing features. However, many bacteria carry 'cryptic' plasmids that do not confer clear beneficial functions. We identified one such cryptic plasmid, pBI143, which is ubiquitous across industrialized gut microbiomes, and is 14 times as numerous as crAssphage, currently established as the most abundant genetic element in the human gut. The majority of mutations in pBI143 accumulate in specific positions across thousands of metagenomes, indicating strong purifying selection. pBI143 is monoclonal in most individuals, likely due to the priority effect of the version first acquired, often from one's mother. pBI143 can transfer between Bacteroidales and although it does not appear to impact bacterial host fitness in vivo, can transiently acquire additional genetic content. We identified important practical applications of pBI143, including its use in identifying human fecal contamination and its potential as an inexpensive alternative for detecting human colonic inflammatory states.

9.
Nucleic Acids Res ; 51(3): 1001-1018, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36100255

RESUMO

Site-specific DNA recombinases play a variety of biological roles, often related to the dissemination of antibiotic resistance, and are also useful synthetic biology tools. The simplest site-specific recombination systems will recombine any two cognate sites regardless of context. Other systems have evolved elaborate mechanisms, often sensing DNA topology, to ensure that only one of multiple possible recombination products is produced. The closely related resolvases from the Tn3 and γδ transposons have historically served as paradigms for the regulation of recombinase activity by DNA topology. However, despite many proposals, models of the multi-subunit protein-DNA complex (termed the synaptosome) that enforces this regulation have been unsatisfying due to a lack of experimental constraints and incomplete concordance with experimental data. Here, we present new structural and biochemical data that lead to a new, detailed model of the Tn3 synaptosome, and discuss how it harnesses DNA topology to regulate the enzymatic activity of the recombinase.


Site-specific DNA recombinases alter the connectivity of DNA by recognizing specific DNA sequences, then cutting the DNA strands and pasting them together in a new configuration. Such enzymes play a variety of biological roles, often related to the dissemination of antibiotic resistance, and are also useful biotechnology tools. The simplest site-specific recombination systems will recombine any two cognate sites regardless of context. However, others have evolved elaborate mechanisms to ensure that only one of multiple possible recombination products is produced. Tn3 resolvase has long been known to be regulated by DNA topology­that is, it will cut and reconnect two target sequences only if they lie on the same DNA molecule, and if they are in the proper relative orientation. This study presents new structural and biochemical data that lead to a new, detailed model of the large protein­DNA complex formed by Tn3 resolvase and its cognate sites. This 3D model illustrates how DNA topology can be harnessed to regulate the activity of a recombinase and provides a basis for engineering Tn3 resolvase and related recombination systems as genome editing tools.


Assuntos
DNA , Complexos Multiproteicos , Transposon Resolvases , Elementos de DNA Transponíveis , Recombinases/genética , Transposases/genética , Transposon Resolvases/genética , Transposon Resolvases/metabolismo , Complexos Multiproteicos/química
10.
Elife ; 92020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32945259

RESUMO

Mobile genetic elements (MGEs) are a rich source of new enzymes, and conversely, understanding the activities of MGE-encoded proteins can elucidate MGE function. Here, we biochemically characterize three proteins encoded by a conserved operon carried by the Staphylococcal Cassette Chromosome (SCCmec), an MGE that confers methicillin resistance to Staphylococcus aureus, creating MRSA strains. The first of these proteins, CCPol, is an active A-family DNA polymerase. The middle protein, MP, binds tightly to CCPol and confers upon it the ability to synthesize DNA primers de novo. The CCPol-MP complex is therefore a unique primase-polymerase enzyme unrelated to either known primase family. The third protein, Cch2, is a 3'-to-5' helicase. Cch2 additionally binds specifically to a dsDNA sequence downstream of its gene that is also a preferred initiation site for priming by CCPol-MP. Taken together, our results suggest that this is a functional replication module for SCCmec.


Assuntos
Proteínas de Bactérias/genética , DNA Helicases/genética , DNA Primase/genética , Resistência a Meticilina/genética , Staphylococcus aureus/genética , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , DNA Helicases/química , DNA Helicases/metabolismo , DNA Primase/química , DNA Primase/metabolismo , Alinhamento de Sequência , Staphylococcus aureus/enzimologia
11.
Science ; 368(6495)2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32499410

RESUMO

Strecker et al (Research Articles, 5 July 2019, p. 48) described a system for exploiting a Tn7-type transposon-encoded CRISPR-Cas system to make RNA-guided, programmable insertions. Although this system has great promise, we note that the well-established biochemistry of Tn7 suggests that the particular system used may insert not only the transposon but also the entire donor plasmid.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Transposases , Sistemas CRISPR-Cas , Elementos de DNA Transponíveis , RNA
12.
Mol Microbiol ; 114(6): 952-965, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33405333

RESUMO

The site-specific recombinase Tn3 resolvase initiates DNA strand exchange when two res recombination sites and six resolvase dimers interact to form a synapse. The detailed architecture of this intricate recombination machine remains unclear. We have clarified which of the potential dimer-dimer interactions are required for synapsis and recombination, using a novel complementation strategy that exploits a previously uncharacterized resolvase from Bartonella bacilliformis ("Bart"). Tn3 and Bart resolvases recognize different DNA motifs, via diverged C-terminal domains (CTDs). They also differ substantially at N-terminal domain (NTD) surfaces involved in dimerization and synapse assembly. We designed NTD-CTD hybrid proteins, and hybrid res sites containing both Tn3 and Bart dimer binding sites. Using these components in in vivo assays, we demonstrate that productive synapsis requires a specific "R" interface involving resolvase NTDs at all three dimer-binding sites in res. Synapses containing mixtures of wild-type Tn3 and Bart resolvase NTD dimers are recombination-defective, but activity can be restored by replacing patches of Tn3 resolvase R interface residues with Bart residues, or vice versa. We conclude that the Tn3/Bart family synapse is assembled exclusively by R interactions between resolvase dimers, except for the one special dimer-dimer interaction required for catalysis.


Assuntos
Proteínas de Bactérias/metabolismo , Bartonella bacilliformis/metabolismo , Transposon Resolvases/metabolismo , Proteínas de Bactérias/genética , Bartonella bacilliformis/genética , Sítios de Ligação , DNA Nucleotidiltransferases/metabolismo , Elementos de DNA Transponíveis , Proteínas de Ligação a DNA/metabolismo , Dimerização , Domínios e Motivos de Interação entre Proteínas , Estrutura Quaternária de Proteína , Proteínas Recombinantes de Fusão/metabolismo , Transposon Resolvases/genética
13.
Nat Chem Biol ; 15(12): 1232-1240, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31740833

RESUMO

S-Palmitoylation is a reversible lipid post-translational modification that has been observed on mitochondrial proteins, but both the regulation and functional consequences of mitochondrial S-palmitoylation are poorly understood. Here, we show that perturbing the 'erasers' of S-palmitoylation, acyl protein thioesterases (APTs), with either pan-active inhibitors or a mitochondrial-targeted APT inhibitor, diminishes the antioxidant buffering capacity of mitochondria. Surprisingly, this effect was not mediated by the only known mitochondrial APT, but rather by a resident mitochondrial protein with no known endogenous function, ABHD10. We show that ABHD10 is a member of the APT family of regulatory proteins and identify peroxiredoxin-5 (PRDX5), a key antioxidant protein, as a target of ABHD10 S-depalmitoylase activity. We then find that ABHD10 regulates the S-palmitoylation status of the nucleophilic active site residue of PRDX5, providing a direct mechanistic connection between ABHD10-mediated S-depalmitoylation of PRDX5 and its antioxidant capacity.


Assuntos
Esterases/fisiologia , Homeostase , Peroxirredoxinas/metabolismo , Células HEK293 , Humanos , Mitocôndrias/metabolismo , Oxirredução
15.
Nat Commun ; 10(1): 3629, 2019 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-31399592

RESUMO

Picornaviral IRES elements are essential for initiating the cap-independent viral translation. However, three-dimensional structures of these elements remain elusive. Here, we report a 2.84-Å resolution crystal structure of hepatitis A virus IRES domain V (dV) in complex with a synthetic antibody fragment-a crystallization chaperone. The RNA adopts a three-way junction structure, topologically organized by an adenine-rich stem-loop motif. Despite no obvious sequence homology, the dV architecture shows a striking similarity to a circularly permuted form of encephalomyocarditis virus J-K domain, suggesting a conserved strategy for organizing the domain architecture. Recurrence of the motif led us to use homology modeling tools to compute a 3-dimensional structure of the corresponding domain of foot-and-mouth disease virus, revealing an analogous domain organizing motif. The topological conservation observed among these IRESs and other viral domains implicates a structured three-way junction as an architectural scaffold to pre-organize helical domains for recruiting the translation initiation machinery.


Assuntos
Sequência Conservada , Sítios Internos de Entrada Ribossomal/fisiologia , Motivos de Nucleotídeos/fisiologia , Picornaviridae/fisiologia , RNA Viral/química , RNA Viral/fisiologia , Sequência de Bases , Vírus da Febre Aftosa/genética , Vírus da Febre Aftosa/metabolismo , Vírus da Hepatite A , Sítios Internos de Entrada Ribossomal/imunologia , Chaperonas Moleculares , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Biossíntese de Proteínas , RNA Viral/metabolismo , Ribossomos/química , Ribossomos/metabolismo
17.
Biochemistry ; 58(15): 1963-1974, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30950607

RESUMO

A( syn)-T and G( syn)-C+ Hoogsteen base pairs in protein-bound DNA duplexes can be difficult to resolve by X-ray crystallography due to ambiguous electron density and by nuclear magnetic resonance (NMR) spectroscopy due to poor chemical shift dispersion and size limitations with solution-state NMR spectroscopy. Here we describe an NMR strategy for characterizing Hoogsteen base pairs in protein-DNA complexes, which relies on site-specifically incorporating 13C- and 15N-labeled nucleotides into DNA duplexes for unambiguous resonance assignment and to improve spectral resolution. The approach was used to resolve the conformation of an A-T base pair in a crystal structure of an ∼43 kDa complex between a 34 bp duplex DNA and the integration host factor (IHF) protein. In the crystal structure (Protein Data Bank entry 1IHF ), this base pair adopts an unusual Hoogsteen conformation with a distorted sugar backbone that is accommodated by a nearby nick used to aid in crystallization. The NMR chemical shifts and interproton nuclear Overhauser effects indicate that this base pair predominantly adopts a Watson-Crick conformation in the intact DNA-IHF complex under solution conditions. Consistent with these NMR findings, substitution of 7-deazaadenine at this base pair resulted in only a small (∼2-fold) decrease in the IHF-DNA binding affinity. The NMR strategy provides a new approach for resolving crystallographic ambiguity and more generally for studying the structure and dynamics of protein-DNA complexes in solution.


Assuntos
Pareamento de Bases , Proteínas de Ligação a DNA/química , DNA/química , Substâncias Macromoleculares/química , Espectroscopia de Ressonância Magnética/métodos , Conformação de Ácido Nucleico , Sequência de Bases , Isótopos de Carbono/metabolismo , Cristalografia por Raios X , DNA/genética , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Substâncias Macromoleculares/metabolismo , Modelos Moleculares , Estrutura Molecular , Isótopos de Nitrogênio/metabolismo , Nucleotídeos/química , Nucleotídeos/genética , Nucleotídeos/metabolismo , Domínios Proteicos
18.
J Phys Chem B ; 122(49): 11519-11534, 2018 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-30336035

RESUMO

Gene regulation depends on proteins that bind to specific DNA sites. Such specific recognition often involves severe DNA deformations, including sharp kinks. It has been unclear how rigid or flexible these protein-induced kinks are. Here, we investigated the dynamic nature of DNA in complex with integration host factor (IHF), a nucleoid-associated architectural protein known to bend one of its cognate sites (35 base pair H') into a U-turn by kinking DNA at two sites. We utilized fluorescence-lifetime-based FRET spectroscopy to assess the distribution of bent conformations in various IHF-DNA complexes. Our results reveal a surprisingly dynamic specific complex: while 78% of the IHF-H' population exhibited FRET efficiency consistent with the crystal structure, 22% exhibited FRET efficiency indicative of unbent or partially bent DNA. This conformational flexibility is modulated by sequence variations in the cognate site. In another site (H1) that lacks the A-tract of H' found on one side of the binding site, the extent of bending in the fully U-bent conformation decreased, and the population in that state decreased to 32%. A similar decrease in the U-bent population was observed with a single base mutation in H' in a consensus region on the other side. Taken together, these results provide important insights into the finely tuned interactions between IHF and its cognate sites that keep the DNA bent (or not) and yield quantitative data on the dynamic equilibrium between different DNA conformations (kinked or not kinked) that depend sensitively on DNA sequence and deformability. Notably, the difference in dynamics between IHF-H' and IHF-H1 reflects the different roles of these complexes in their natural context, in the phage lambda "intasome" (the complex that integrates phage lambda into the E. coli chromosome).


Assuntos
DNA/química , Fluorescência , Fatores Hospedeiros de Integração/química , Escherichia coli/química , Transferência Ressonante de Energia de Fluorescência , Conformação de Ácido Nucleico , Espectrometria de Fluorescência
20.
Nucleic Acids Res ; 46(10): 5286-5296, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29315406

RESUMO

Members of the serine family of site-specific recombinases exchange DNA strands via 180° rotation about a central protein-protein interface. Modeling of this process has been hampered by the lack of structures in more than one rotational state for any individual serine recombinase. Here we report crystal structures of the catalytic domains of four constitutively active mutants of the serine recombinase Sin, providing snapshots of rotational states not previously visualized for Sin, including two seen in the same crystal. Normal mode analysis predicted that each tetramer's lowest frequency mode (i.e. most accessible large-scale motion) mimics rotation: two protomers rotate as a pair with respect to the other two. Our analyses also suggest that rotation is not a rigid body movement around a single symmetry axis but instead uses multiple pivot points and entails internal motions within each subunit.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , DNA Nucleotidiltransferases/química , DNA Nucleotidiltransferases/metabolismo , Proteínas de Bactérias/genética , Domínio Catalítico , Cristalografia por Raios X , DNA Nucleotidiltransferases/genética , Modelos Moleculares , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...